

CREMA tutorial

Swiss Institute of Bioinformatics

Erik van Nimwegen

Mikhail Pachkov

@NimwegenLab

www.sib.swiss

BIOZENTRUM

The Center for Molecular Life Sciences

Universität Basel

What about distal regulation?

- ISMARA only considers regulatory elements near the transcription start site.
- But in higher eukaryotes, a lot (most?) of gene regulation is driven by distal cisregulatory elements (enhancers).

Features of (distal) Cis-Regulatory Elements

- Activation requires local chromatin structure to become accessible.
- Each CRE is bound by different combinations of TFs.
- RNA polymerase is recruited to active CREs.
- Active CREs can produce short aborted transcripts.
- Chromatin is looped (actively) so that CREs contact target promoters.
- CRE state is associated with particular chromatin marks.

Why is including the effects of distal CREs challenging?

- **1.** There are too many! A substantial fraction of the genome can act as a CRE *in particular tissues/conditions*.
- **2. CREs are highly condition-dependent.** In contrast to elements like genes and promoters, the set of active CREs in the genome is highly condition-dependent.
- **3. Disagreement between different methods for CRE identification** (e.g. DNA accessibility, H3K4me1, H3K27ac, p300, eRNAs).
- 4. Poor understanding of CRE-promoter interaction
 - We typically do not know which CREs target which promoters.
 - Little understanding of how CRE activity affects target gene expression.

BIOZENTRUM

CREMA

Automated modeling of genome-wide chromatin state in terms of local constellations of regulatory sites

Summary of the approach

- Input: raw sequencing data of enhancer marks (Dnase-seq, ATAC-seq, ChIP-seq) across a set of samples.
- **CRE detection:** All genomic regions that show a significant enrichment in at least one sample.
- **CRE signal matrix:** Quantify the strength of each CRE's signal across conditions.
- **TFBS annotation:** Predict TFBSs in all CREs genome-wide.
- **Model CRE activity:** Model the CRE signal strength across samples in terms the the TFBSs in each CRE and activities of regulators.

CREMA

Automated modeling of genome-wide chromatin state in terms of local constellations of regulatory sites

Summary of the approach

- Input: raw sequencing data of enhancer marks (Dnase-seq, ATAC-seq, ChIP-seq) across a set of samples.
- **CRE detection:** All genomic regions that show a significant enrichment in at least one sample.
- **CRE signal matrix:** Quantify the strength of each CRE's signal across conditions.
- **TFBS annotation:** Predict TFBSs in all CREs genome-wide.
- **Model CRE activity:** Model the CRE signal strength across samples in terms the the TFBSs in each CRE and activities of regulators.

Completely automated analysis of ChIP-seq data

SIB Swiss Institute of Bioinformatics	CRUNCH	BIOZENTRUM Universität Basel The Center for Molecular Life Sciences
About	Please select appropriate options, add files for upload and click "Start Upload" button	
Encode Reports	Email: Optional	
	Project name: Optional	
	Genome version: Human (hg19) Mouse (mm9) Mouse (mm10) Drosophila (dm3)	
	Advanced options	
	Upload files Upload file links Upload SRR IDs	
	+ Foreground files + Background files Start upload Cancel upload	
	crunch.unibas.ch	

Citation:

<u>Genome Res.</u> 2019 Jul;29(7):1164-1177. doi: 10.1101/gr.239319.118. Epub 2019 May 28.

Crunch: integrated processing and modeling of ChIP-seq data in terms of regulatory motifs.

<u>Berger S¹</u>, <u>Pachkov M¹</u>, <u>Arnold P¹</u>, <u>Omidi S¹</u>, <u>Kelley N¹</u>, <u>Salatino S¹</u>, <u>van Nimwegen E¹</u>.

Preprocessing

- 1. Quality Filtering
- 2. Adapter Removal
- 3. Read Mapping
- 4. BED and WIG Extraction
- 5. Fragment Size Estimation

Peak Calling

- 6. Detecting Enriched Regions
- 7. Decomposition of Enriched Regions
- 8. Peaks Annotation

Regulatory Motif Analysis

- 9. Finding de novo Motifs
- 10. Identifying Complementary Motif Set from *de novo* and Known Motifs
- 11. Motif Site Prediction
- 12. Motif Scoring and Annotation

BIOZENTRUM

- 11. Motif Site Prediction
- 12. Motif Scoring and Annotation

- Truncate low quality 3' ends of reads.
- Remove reads that are:
 - too short
 - too low sequencing quality (phred score)
 - too many Ns
 - too low dinucleotide entropy.
- Identify which of a library of 3' adapter sequences has most prefix matches to the reads.
- Remove adaptor matches.

BIOZENTRUM

Preprocessing 1. **Quality Filtering Adapter Removal** 2. 3. **Read Mapping BED and WIG Extraction** 4. **Fragment Size Estimation** 5. Peak Calling **Detecting Enriched Regions** 6. **Decomposition of Enriched Regions** 7. **Peaks Annotation** 8. **Regulatory Motif Analysis** Finding de novo Motifs 9.

- 10. Identifying Complementary Motif Set from *de novo* and Known Motifs
- 11. Motif Site Prediction
- 12. Motif Scoring and Annotation

- Map reads to the genome (Bowtie).
- Use only 'best' mappings for each read.
- Note: Multi-mappers are divided with equal weight over the loci that they map to.

BIOZENTRUM

BIOZENTRUM

Fragment length can be estimated from cross-correlation of reads on opposite strands

From: Kharchenko et al Nat Biotech (2008), after Schmid and Bucher Cell (2007)

- DNA fragments are either sequenced from the left end on the plus strand.
- Or from their right end on the negative strand.
- The mapping position on pos/neg strand corresponds to the start/end of the fragment.
- One binding peak leads to *two* peaks of mapped reads: one on plus strand, and one shifted by fragment length on the negative strand.
- The cross-correlation between starts/ends of reads on pos/neg strand captures the fragment length.

BIOZENTRUM

• Using this, we estimate the (strand independent) central position for each read.

BIOZENTRUM

Universität Basel The Center for Molecular Life Sciences

12. Motif Scoring and Annotation

Preprocessing

- 1. Quality Filtering
- 2. Adapter Removal
- 3. Read Mapping
- 4. BED and WIG Extraction
- 5. Fragment Size Estimation

Peak Calling

- 6. Detecting Enriched Regions
- 7. Decomposition of Enriched Regions
- 8. Peaks Annotation

Regulatory Motif Analysis

- 9. Finding de novo Motifs
- 10. Identifying Complementary Motif Set from *de novo* and Known Motifs
- 11. Motif Site Prediction
- 12. Motif Scoring and Annotation

- Slide 500 bp window across the genome.
- Quantify significance of the enrichment of ChIPseq over input DNA in each window.
- Collect all windows over a significance threshold.
- Fuse consecutive windows into enriched regions.

BIOZENTRUM

Removing regions with abnormally high coverage in background samples

- Reverse cumulative distribution of background reads per window.
- About 1 in 1000 windows has abnormally large coverage.
- These regions are often associated with repetitive elements and map poorly to other species.
- These are likely an artefact, e.g. the assembly may underestimate the size of these repeats.
- The statistics of the peak finding model breaks down in these regions.
- CRUNCH thus removes these regions from consideration.

BIOZENTRUM

Bayesian model for identifying enriched regions

Noise model for read-counts in un-enriched windows

• *Multiplicative* noise plus *Poisson* sampling, i.e. as previously developed in:

Balwierz PJ, Carninci P, Daub CO, Kawai J, Hayashizaki Y, Van Belle W, Beisel C, van Nimwegen E. Genome Biol. 2009;10(7):R79. doi: 10.1186/gb-2009-10-7-r79. Epub 2009 Jul 22.

Variables:

- *n*,*m* = reads in ChIP/input sample.
- *N*,*M* = total reads in ChIP/input sample.
- σ = standard-deviation of the multiplicative noise.
- μ = Shift in average log read-density.

Probability of observing *x* **if there is no true enrichment**: $P(x | \mu, \sigma) \propto \exp(|\mu, \sigma)$

Mixture model

The enrichment x_i for each window i derives from either the noise model or a uniform distribution (= 'something else'):

$$P(D \mid \mu, \sigma, \rho) = \prod_{i} \left| P(x_i \mid \mu, \sigma)\rho + \frac{1 - \rho}{x_{\max} - x_{\min}} \right|$$

We fit μ, σ, and ρ to maximize P(D | μ,σ,ρ), and calculate an enrichment z-score for each window.

SIB Swiss Institute of Bioinformatics

BIOZENTRUM

Universität Basel The Center for Molecular Life Sciences **Enrichment** *x*:

 $x = \log \left| \frac{n}{N} \right| - \log \left| \frac{m}{M} \right|$

$$\exp\left[-\frac{\left(x-\mu\right)^2}{2\left(2\sigma^2+\frac{1}{n}+\frac{1}{m}\right)}\right]$$

The noise model accurately captures the observed genome-wide enrichment statistics

As far as we are aware, **CRUNCH has the only peak-finder that** demonstrably matches the data's statistics.

Swiss Institute of

Bioinformatics

BIOZENTRUM

Automated decomposition of each enriched region into individual binding peaks using a Gaussian mixture

- Read-density profile modeled as a *Gaussian mixture* plus background read-density.
- Informative prior on peak-width from fragment sizes.
- Each individual peak assigned a final significance.
- Final individual peaks sorted by their significance.
- **Peak annotation**: Identify nearest neighboring genes.

BIOZENTRUM

Sorted list of annotated peaks

Coordinates	Z-score 🗸	Nearest Genes on the Left	Offset of Nearest TSS on the Left (Strand)	Nearest Genes on the Right	Offset of Nearest TSS on the Right (Strand)
chr1:231473615231473742	29.765	EXOC8 exocyst complex component 8	-124 (-)	C1orf124 chromosome 1 open reading frame 124	40 (+)
chr19:5460599154606132	28.249	OSCAR osteoclast associated, immunoglobulin-like receptor	-1942 (-)	NDUFA3 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 3, 9kDa	105 (+)
chr7:112580113112580240	27.969	C7orf60 chromosome 7 open reading frame 60	-346 (-)	GPR85 G protein-coupled receptor 85	146319 (-)
chr19:61995706199712	26.929		-94 (-)		80162 (-)
chr9:140513296140513390	26.479	C9orf37 chromosome 9 open reading frame 37	-50 (-)	EHMT1 euchromatic histone-lysine N- methyltransferase 1	100 (+)
chr9:139981271139981382	26.151	LOC100289341 uncharacterized LOC100289341	-42 (-)	MAN1B1 mannosidase, alpha, class 1B, member 1	49 (+)
chr2:216973877216974011	25.570	TMEM169 transmembrane protein 169	-27252 (+)	XRCC5 X-ray repair complementing defective repair in Chinese hamster cells 5 (double- strand-break rejoining)	108 (+)
chr7:52297925229888	25.454	WIPI2 WD repeat domain, phosphoinositide interacting 2	-11 (+)	WIPI2 WD repeat domain, phosphoinositide interacting 2	57 (+)
chr21:3025765530257758	25.363	N6AMT1 N-6 adenine-specific DNA methyltransferase 1 (putative)	-43 (-)	LTN1 listerin E3 ubiquitin protein ligase 1	107487 (-)
chr19:3913814839138289	25.166	EIF3K eukaryotic translation initiation factor 3, subunit K	-28341 (+)	ACTN4 actinin, alpha 4	48 (+)

Examples of peaks fitted within regions hide

Example from top 5% of regions	Example from top 10% of regions	Example from top 20% of regions	Example from top 40% of regions	Example from top 60% of regions	Example from top 90% of regions

SIB Swiss Institute of Bioinformatics

BIOZENTRUM

- The CRUNCH pipe-line is used to identify peaks within each sample.
- All peaks from all samples with centers within 75bp are fused into CREs.
- 90% of all CREs are less than 500bp in datasets processed so far.
- Typically on the order of 100'000 CREs genome-wide in a given dataset.

CRE signal strength across samples

Signal strength is defined as the log-ratio of the read-density in the foreground sample relative to a `background' sample:

$$S_{cs} = \log\left(\frac{f_{cs}}{F_s} \cdot \tilde{F} + 1\right) - \log\left(\frac{b_{cs}}{B_s} \cdot \tilde{F} + 1\right)$$

- S_{cs} = Signal of CRE *c* in sample *s*.
- f_{cs} = Number of reads from sample *s* falling in CRE *c*.
- F_s = Total number of reads in sample *s*.
- \tilde{F} = Median number of total reads across samples.
- b_{cs} = Number of *background* reads from sample *s* falling in CRE *c*.
- B_s = Total number of reads in sample *s*.

Background

- For ChIP-seq: Provided background samples of input DNA (or reference ChIP-seq background sample that we have precalculated).
- For ATAC-seq/DNase-seq: A simple *uniform distribution* of background read counts.

- We use our curated collection of ~500 motif groups representing ~600 mammalian TFs.
- We use MotEvo to predict TFBSs for each motif *m* in each CRE *c*.
- The TFBS predictions are summarized in the sitecount matrix:

Universität Basel

 N_{cm} = Sum of the posteriors of sites for motif *m* in CRE *c*.

MARA model for CREs

 We employ the MARA model *exactly* as it is performed for gene expression data, i.e. we fit the model:

$$S_{cs} = \sum_{m} N_{cm} \cdot A_{ms} + \tilde{c}_c + c_s + noise$$

- A_{ms} = Average effect on CRE signal in sample *s* from removing 1 binding site for motif *m*.
- We again use a *Gausian prior* on the motif activities (ridge regression) and optimize its parameter using 80/20 cross-validation.
- Motif significances are:

$$z_m = \sqrt{\frac{1}{S} \sum_{s} \left(\frac{A'_{ms}}{\delta A'_{ms}}\right)^2}$$

• Target scores are (changes in chi-squared of the fit):

$$\zeta_{cm} = \frac{\sum_{s} \chi^2_{csm} - \chi^2_{cs}}{\langle \chi^2 \rangle}$$

Predicting targets of each motif (conceptual)

- For each motif, select promoters with predicted sites, i.e with $N_{cm} > 0$
- Mutate CRE c to remove the binding site(s) for motif m: $N_{cm} \rightarrow 0$
- Updated site-count matrix: $N \rightarrow \tilde{N}$
- Log-likelihood ratio of fitting *all data* with N versus the mutated N:

 $\zeta_{cm} = \log \left[\frac{\int dAP(S|N, A)}{\int dAP(S|\tilde{N}, A)} \right]$ Quantifies the contribution of motif *m* to explaining the signal across samples of CRE *c*.

The log-likelihood ratio ζ_{cm} quantifies how much the quality of the fit is reduced when the sites for motif *m* in CRE *c* are removed.

Associating CREs with genes

Distance based weights between CRE and TSS of nearby genes:

$$w_c(G) = \frac{0.95}{1 + (\frac{d_{CG}}{d_p})^2} + \frac{0.05}{1 + (\frac{d_{CG}}{d_d})^2}$$

Probability of associating CRE *c* with gene G based on relative weights:

$$P_c(G) = \frac{w_c(G)}{w_0 + \sum_g w_c(g)}$$

 $w_0 = 0.01$

crema.unibas.ch

CREMA: Cis-Regulatory Element Motif Activities

Please choose appropr clicking the "Start uplo	iate options and start yo ad" button.	our job submission by
Email:		
Project name:		
Data type:	DNA accessebility (ATAC/DNase-Seq)	 Enhancer marks (ChIP-Seq)
Organism:	● human (hg19) ● mouse	e (mm10) • rat (rn6)
Add files Start upload	Cancel upload Delete	
About Usage How to uplo	ad data Example results Te	rms of use Contact

crema.unibas.ch

CREMA: Cis-Regulatory Element Motif Activities

Pleas clicki	se choos ng the "	se appro Start up	priate op load" bu	otions and tton.	start you	ır job sı	ubmission	by
	Email:							
	Project na	ime:						
	Data type:			DNA access (ATAC/DNase- (ATAC/DNase-)	● Enha (Cł	hancer marks ChIP-Seq)		
	Organism	:		uman (hg19)	mouse	(mm10)	● rat (rn6)	
Add f	iles St	art upload	Cancel up	load Delete				
About	Usage	How to up	load data	Example res	ults Terr	ns of use	Contact	
							_	

Click on example results

crema.unibas.ch

Example results

- DNase-Seq: mouse liver sampled at different timepoints after prolonged exposure to constant darkness.
 - CREMA results
 - ENCODE link to the dataset
- ATAC-Seq: different tissues sampled at different timepoints during embryonic development.
 - CREMA results
 - ENCODE link to the dataset
- H3K4me3 ChIP-Seq: Immunoprecipitation for H3K4me3 across different tissues sampled at different timepoints during embryonic development.
 - CREMA results
 - ENCODE link to the dataset
- H3K4me3 ChIP-Seq: Immunoprecipitation for H3K4me3 across different types of primary human cells
 - CREMA results
 - ENCODE link to the dataset
- H3K4me1 ChIP-Seq: Immunoprecipitation for H3K4me1 across different types of primary human cells
 - CREMA results
 - ENCODE link to the dataset
- Chromatin accessibility in the developing mouse embryo.
- ATAC-seq from the Bing Ren lab (ENCODE).
- 10 tissues, multiple time points in each.

Results chromatin accessibility in mouse development

Project

ENCODE: ATAC-seq of different tissues during embryonic development CREMA

Navigation

Motif significance table Sample table Mean activities PCA plots All CRE sorted by FOV

CREMA identifies cis-regulatory elements genome-wide and models their activities across samples in terms of predicted transcription factor binding sites within them.

Regulatory motifs sorted by significance (z-value)

Search:	Show 10	entr	ies				
Motif name		∿	Z-value ↑↓	Associated genes	5	Profile	Logo
Tal1			43.90	Tal1	Links 💌	Ann	
Rfx3_Rfx1_Rfx4			31.11	Rfx3 Rfx1 Rfx4	Links Links Links Links	Anur	
Hnf4a			24.18	Hnf4a	Links 🔻	mly	

BIOZENTRUM

Results chromatin accessibility in mouse development

ENCODE: ATAC-seq of different tissues during embryonic development CREMA

Navigation Show 10 entries Search: \$ Motif name **∧ Z-value** 1↓ Associated genes Profile Motif significance table Sample table Tal1 43.90 Tal1 Links 🔻 nnull Mean activities PCA plots All CRE sorted by FOV Rfx3_Rfx1_Rfx4 31.11 Rfx3 Ash Links -Rfx1 Links < Search gene Rfx4 Links < Perform sample averaging 24.18 f4a Hnf4a Links 🔻 mally **Downloads**

CREMA identifies cis-regulatory elements

binding sites within them.

genome-wide and models their activities across samples in terms of predicted transcription factor

Regulatory motifs sorted by significance (z-value)

Information per sample.

BIOZENTRUM

Universität Basel The Center for Molecular Life Sciences

Logo

List of samples with CRE summary statistics

Sample name	CRE number 1	Mean CRE signal intensity 🛝	Std. Dev. of signal intensity across CREs 1	Fraction of CRE signal intensity variance explained by motif activities \checkmark
embryonicfacialprominence_E11.5	29890	3.295	1.1646	0.086
embryonicfacialprominence_E12.5	21300	3.252	1.1245	0.079
embryonicfacialprominence_E13.5	16267	3.156	1.0439	0.102
embryonicfacialprominence_E14.5	54652	3.545	1.3021	0.117
embryonicfacialprominence_E15.5	23321	3.289	1.0929	0.098
forebrain_E11.5	68171	3.264	1.2877	0.187
forebrain_E12.5	75944	3.340	1.2975	0.219
forebrain_E13.5	69462	3.498	1.3999	0.252
forebrain_E14.5	86946	3.580	1.4850	0.258
forebrain_E15.5	57761	3.509	1.3661	0.232

BIOZENTRUM

Links with more information about each sample.

Most significant motifs for forebrain_E15.5

Regulatory motifs sorted by significance (z-value) for sample forebrain_E15.5.

◙ Q ⊕ !!! ♀ ◘ ◘ ⊠ ☆ '! = = ■

z-value of motif activity

Results chromatin accessibility in mouse development

ENCODE: ATAC-seq of different tissues during embryonic development

CREMA

M PC Al CREMA identifies cis-regulatory elements genome-wide and models their activities across samples in terms of predicted transcription factor

binding sites within them.

Regulatory motifs sorted by significance (z-value)

Navigation	Search:		Show	10 🗢	entri	ies				
Motif significance	Motif nam	e			∿	Z-value 1↓	Associated gen	es	Profile	Logo
Sample table Mean activities PCA plots All CRE sorted by FOV	Tal1					43.90	Tal1	Links 🔻	Sura	
FOV Search gene Perform sample averaging Downloads	Rfx3_Rfx1_	Rfx4				31.11	Rfx3 Rfx1 Rfx4	Links 🔻 Links 👻 Links 👻	Arur	FO 1 1 1 1 1 1 1 1 1 1 1 1 1
	Hnf4a					24.18	Hnf4a	Links 🔻	mM	

PCA plots summarize the overall structure in the data

Universität Basel The Center for Molecular Life Sciences

BIOZENTRUM

PCA of the CRE signal vectors across samples

◙ Q ⊕ ∭ ♀ ◨ ⊒ ⊠ ☆ " = = Ⅲ

- Interactive figure (mouse over, zoom, screen shot, etc.)
- Colors correspond to tissues.
- Symbols correspond to developmental time.

PCA of the motif activities across samples

- More than 70% of the variance is captured by the first two PCA components.
- Samples tend to move radially outward with developmental time.
- Projections of top motifs onto these two PCA components are indicated.

Motifs sorted by significance (explaining changes in accessibility across samples)

Regulatory motifs sorted by significance (z-value)

Search: Show 10 \$ entries	;			
Motif name 🛝	Z-value ↑↓	Associated genes	Profile	Logo
Tal1	43.90	Tal1	Mura	Terr Terr
Rfx3_Rfx1_Rfx4	31.11	Rfx3Links ▼Rfx1Links ▼Rfx4Links ▼	Arus	and a second sec
Hnf4a	24.18	Hnf4a Links 💌	mh	and a second sec
Hnf1b	23.65	Hnf1b Links -	M	HTB HTB HTB HTB HTB HTB HTB HTB

Motifs sorted by significance (explaining changes in accessibility across samples)

Regulatory motifs sorted by significance (z-value)

Search: Show 10 ¢ entries	6			
Motif name 🛝	Z-value ↑↓	Associated genes	Profile	Logo
Tal1	43.90	Tal1	Mur	Terr and a second seco
Rfx3_Rfx1_Rfx4	31.11	Rfx3Links ▼Rfx1Links ▼Rfx4Links ▼	Arus	Hod and a second secon
Hnf4a	24.18	Hnf4a Links 💌	mle	t t t t t t t t t t t t t t t t t t t
Hnf1b	23.65	Hnf1b Links -	M	HCD HCD HCD HCD HCD HCD HCD HCD

Rfx motif is second in the list.

Three Rfx TFs bind this motif

Results for Rfx3_Rfx1_Rfx4

Z-value: 31.11

Transcription factors associated with Rfx3_Rfx1_Rfx4

Gene Symbol		Gene ID	Gene Info
Rfx3	Links 🔻	ENSMUSG0000040929.10	Rfx3
Rfx1	Links 🔻	ENSMUSG0000031706.6	Rfx1
Rfx4	Links 🔻	ENSMUSG0000020037.9	Rfx4

CREs near the TFs associated with the motif

Correlations of motif activity and signal intensity at CREs associated with the motif's TFs:

This plot shows correlation between observed signal intensity of a CRE associated with the transcription factor across all samples and activity of the motif.

For each TF, only the top 5 correlated CREs are shown.

Search:

CRE ↑↓	Gene 🔨	Distance 🔨	Association probability $\qquad \uparrow \downarrow$	Pearson corr. coef.	P-value 🛝	Plot 🔨
chr10_84755143_84755591	Rfx4	695	0.737904	0.92	1.1e-23	Click!
chr10_84755702_84756130	Rfx4	146	0.967176	0.94	1.4e-26	Click!
chr10_84759995_84760379	Rfx4	2051	0.369321	0.91	2.4e-22	Click!
chr10_84760401_84760624	Rfx4	1726	0.414784	0.89	2.4e-19	Click!
chr10_84822817_84823117	Rfx4	11779	0.202604	0.90	1.1e-20	Click!
chr19_27780178_27780329	Rfx3	56593	0.132444	-0.26	5.3e-02	Click!
chr19_27904353_27904521	Rfx3	3542	0.297613	0.58	3.8e-06	Click!
chr19_27904687_27904996	Rfx3	3946	0.286683	0.59	2.5e-06	Click!
chr19_27906087_27906262	Rfx3	5279	0.265413	-0.45	5.6e-04	Click!
chr19_28010780_28010937	Rfx3	68	0.974083	0.55	1.3e-05	Click!
chr8_84066182_84066879	Rfx1	304	0.625008	-0.09	5.0e-01	Click!

CREs near the TFs associated with the motif

Correlations of motif activity and signal intensity at CREs associated with the motif's TFs:

This plot shows correlation between observed signal intensity of a CRE associated with the transcription factor across all samples and activity of the motif.

For each TF, only the top 5 correlated CREs are shown.

Search:

CRE TH	Gene 🛝	Distance 🛝	Association probability 🛝	Pearson corr. coef.	P-value 🛝	Plot 🔨
chr10_84755143_84755591	Rfx4	695	0.737904	0.92	1.1e-23	Click!
chr10_84755702_84756130	Rfx4	146	0.967176	0.94	1.4e-26	Click!
chr10_84759995_84760379	Rfx4	2051	0.369321	0.91	2.4e-22	Click!
chr10_84760401_84760624	Rfx4	1726	0.414784	0.89	2.4e-19	Click!
chr10_84822817_84823117	Rfx4	11779	0.202604	0.90	1.1e-20	Click!
chr19_27780178_27780329	Rfx3	56593	0.132444	-0.26	5.3e-02	Click!
chr19_27904353_27904521	Rfx3	3542	0.297613	0.58	3.8e-06	Click!
chr19_27904687_27904996	Rfx3	3946	0.286683	0.59	2 50-06	Click!
			0.200000	0.00	2.56-00	
chr19_27906087_27906262	Rfx3	5279	0.265413	-0.45	5.6e-04	Click!
chr19_27906087_27906262 chr19_28010780_28010937	Rfx3 Rfx3	5279 68	0.265413 0.974083	-0.45 0.55	5.6e-04 1.3e-05	Click! Click!

CREs near Rfx4 have CRE signal intensities that highly correlate with motif activity

CREs near the TFs associated with the motif

Correlations of motif activity and signal intensity at CREs associated with the motif's TFs:

This plot shows correlation between observed signal intensity of a CRE associated with the transcription factor across all samples and activity of the motif.

For each TF, only the top 5 correlated CREs are shown.

Search:

CRE	∿⊦	Gene ↑↓	Distance 🔨	Association probability	∿	Pearson corr. coef.	P-value 🔨	Plot ↑↓
chr10_84755143_84755591		Rfx4	695	0.737904		0.92	1.1e-23	Click!
chr10_84755702_84756130		Rfx4	146	0.967176		0.94	1.4e-26	Click!
chr10_84759995_84760379		Rfx4	2051	0.369321	1	Rfx3_Rfx1_Rfx4,	0 = 0.91 84760379 (Rfx4)	
chr10_84760401_84760624		Rfx4	1726	0.414784	5.5 -		••••	•
chr10_84822817_84823117		Rfx4	11779	0.202604	5.0 -			
chr19_27780178_27780329		Rfx3	56593	0.132444 ⁽⁵⁾	4.5 -			
chr19_27904353_27904521		Rfx3	3542	0.297613	, 4.0 -			
chr19_27904687_27904996		Rfx3	3946	o.286683	3.5 -			
chr19_27906087_27906262		Rfx3	5279	0.265413	30			
chr19_28010780_28010937		Rfx3	68	0.974083	J.V [–0.2 0.0 motif activity).2 0.4 /	0.6
chr8_84066182_84066879		Rfx1	304	0.625008		-0.09	5.0e-01	Click!

Rfx4 promoter accessibility matches the activity of the motif across samples.

CREs near the Rfx4 promoter

- 7 Separate CREs in a 10Kb region around the start of the Rfx4 gene.
- 3 more CREs downstream of the promoter and upstream of 2 lincRNAs.

Activity of the Rfx3_Rfx1_Rfx4 motif across the samples

- The motif is strongly upregulated in all neural tissues.
- The motif increases in activity across development.

activity

• Especially in late development and postnatally in forebrain.

List of top target CREs of the Rfx motifs

	e mour.				
Search:	S	now 10 🗢 entries			
Cis Regulatory Element (CRE)	Target Score ↑↓	Top associated gene 🔨	Gene Info 🛝	Distance of CRE to TSS ↑↓	CRE/Gene association probability
chr7_18949823_18950240	191.24	Nova2	NOVA alternative splicing regulator 2	24143	0.07
chr18_60925120_60925333	185.35	Camk2a	calcium/calmodulin-dependent protein kinase II alpha	392	0.8
chr1_37220253_37220450	179.27	Cnga3	cyclic nucleotide gated channel alpha 3	1146	0.49
chr15_10011651_10011840	176.85	Prlr	prolactin receptor	165493	0.04
chr8_86438726_86438901	173.89	Abcc12	ATP-binding cassette, sub-family C (CFTR/MRP), member 12	95934	0.07
chr3_117826862_117827070	162.57	Snx7	sorting nexin 7	4308	0.26
chr18_60925459_60925693	158.63	Camk2a	calcium/calmodulin-dependent protein kinase II alpha	42	0.97
chr10_20944709_20944873	157.25	Ahi1	Abelson helper integration site 1	7756	0.23
chr1_85917187_85917621	152.35	4933407L21Rik	RIKEN cDNA 4933407L21 gene	11079	0.12
chr16_42718124_42718429	151.87	Gm49739	predicted gene, 49739	54350	0.16
Showing 1 to 10 of 200 entries				Previous 1 2 3	4 5 20 Next

All tables like this are searchable and sortable by each of their columns.

Ton target CPEs of the motify

How many CREs does the Rfx motif target?

Rank distribution of CRE target scores:

Swiss Institute of Bioinformatics

Where are the CREs that the Rfx motif targets?

Histogram of CRE-TSS distance, based on: 6375 CREs

- Targets = all CREs that have at least 1 binding site for the Rfx motif.
- The histogram is made by weighing each CRE with its target score for the Rfx motif.

BIOZENTRUM

Where are the CREs that the Rfx motif targets?

- Fractions of the CREs targeted by the Rfx motif that intersect different types of genomic regions.
- Enrichment of each region type relative to *random positions in the genome*.
- Enrichment of each region type relative to the set of *all CREs*.

10th most significant motif is Mef2b

		Search:							
CRE	¢₽	Gene 🛝	Distance 🛝	Association probability 🛝	Pearson corr. coef.	∿	P-value 🛝	Plot	∿
Mef2b		chr8_70150289_70150461	2403	0.133878	-0.47	mm10	Mef2b, p = -0.47 chr6_70150289_70150461 (Mef2b)	Click!	
Mef2b		chr8_70158695_70158876	6004	0.091679	-0.34	45 - 40 - 0		Click!	
Mef2b		chr8_70158390_70158605	5716	0.092633	-0.32	30 -		Click!	
Mef2b		chr8_70150602_70150753	2101	0.149362	-0.29	-0.2 0.0	02 0.4 0.6 0.8 motif activity	Click!	
Mef2b		chr8_70152631_70152851	37	0.943420	-0.23		9.2e-02	Click!	

None of the CREs near Mef2b correlate strongly in accessibility with Mef2b motif activity.

Mef2b motif activity is strongly up-regulated in the developing heart.

Mef2b targets muscle genes, mostly in introns

Nfia motif activity increases with time in many tissues

5 6 7

3 4 Position CREs near the Nfia TF have accessibility that correlate with Nfia motif activity.

Results chromatin accessibility in mouse development

ENCODE: ATAC-seq of different tissues during embryonic development CREMA

Navigation

Motif significance table Sample table Mean activities PCA plots All CRE sorted by FOV Search gene Perform sample averaging Downloads CREMA identifies cis-regulatory elements genome-wide and models their activities across samples in terms of predicted transcription factor binding sites within them.

Regulatory motifs sorted by significance (z-value)

Search: Show	10 🗢 entri	es			
Motif name	$\uparrow \!$	Z-value ↑↓	Associated genes	Profile	Logo
Tal1		43.90	Tal1 Links 💌	mm	Terr and a second seco
Rfx3_Rfx1_Rfx4		31.11	Rfx3Links ▼Rfx1Links ▼Rfx4Links ▼	Artur	to the second se
Hnf4a		24.18	Hnf4a Links 🔻	m	

Searchable list with all CREs.

SIB Swiss Institute of Bioinformatics

Universität Basel The Center for Molecular Life Sciences

BIOZENTRUM

List of CREs with summary statistics

This table shows statistics for all CRE/genes in the dataset.

Show 100 \$ entries

Search:

CRE ↑↓	Mean signal intensity ↑↓	Std. deviation ↑↓	FOV 14	Genes 🔨
mm10_chr11_77965366_77966105	4.926	7.251	0.959	Sez6 seizure related gene 6, 3276
mm10_chr3_89101865_89102228	6.854	3.571	0.950	Fdps farnesyl diphosphate synthetase, 87
mm10_chr7_73637506_73638025	4.249	10.351	0.944	Gm44737 predicted gene 44737, 7148
mm10_chr4_57433887_57434762	5.640	6.619	0.941	Pakap paralemmin A kinase anchor protein, 77
mm10_chr1_22805304_22806048	5.658	5.610	0.937	Rims1 regulating synaptic membrane exocytosis 1, 48
mm10_chr4_59244807_59245275	3.900	9.343	0.935	Gm12596 predicted gene 12596, 15010
mm10_chr13_30084076_30084404	3.700	7.668	0.934	Gm47259 predicted gene, 47259, 14253
mm10_chr4_91374216_91374916	4.952	6.529	0.934	Mir6402 microRNA 6402, 1203
mm10_chr17_56831048_56831354	7.161	3.202	0.930	Rfx2 regulatory factor X, 2 (influences HLA class II expression), 188
mm10_chr16_72510448_72511408	4.535	10.539	0.927	Robo1 roundabout guidance receptor 1, 52772

- The table can be sorted by any of its columns (default by FoV).
- One can search for particular CREs or genes.
- Note a gene can have many CREs associated with it.
- The table is LARGE and typically takes ~1 minute to load.

Example of a CRE with very high FoV

CRE: chr11_77965366_77966105

Fraction of explained variance: 0.959 SwissRegulon link: chr11_77965366_77966105 Associated genes:

Sez6 : seizure related gene 6 Links
 Associated transcript: ENSMUST00000140630

On this plot you can see a contribution of individual motifs into the predicted signal intensities. Use checkboxes in the table on the right side to show or remove impact of a motif to the predicted signal intensities. By default all motifs are turned off.

This plot shows signal intensities and predicted signal of mm10_chr11_77965366_77966105 CRE. Left vertical axis is a CRE signal intensities on the log2 scale. Right vertical axis is a predicted CRE signal on the log2 scale. Horisontal axis indicates samples.

Search:	:	Show 10	\$ 0	enti	ries			
Motif	$\uparrow \!$	ChiSq	tΨ	Site	eCou	nt 🛝	z	-val ∿↓
Vsx1_Uncx_Prrx2_Shox2_Noto		10.86		0.72	2		6.	42
Rfx3_Rfx1_Rfx4		9.34		1.24	Ļ		31	1.11
□ Nkx6-1_Evx1_Hesx1		7.08		1.54	Ļ		5.	66
Hoxb2_Dlx2		6.06		1.14			5.	48
Gsx1_Alx1_Mixl1_Lbx2		4.78		1.54	Ļ		6.	13
□ Klf4_Sp3		3.24		1.12			13	3.37
Hnf1b		2.18		0.28	3		23	3.65
Pparg_Rxrg		1.95		1.18			9.	16
□ Zfx_Zfp711		1.40		2.79	Э		9.	60
Wrnip1_Mta3_Rcor1		1.35		6.14	Ļ		8.	54
Showing 1 to 10 of 136 entries	Previous	1 2	3	4	5		14	Next

Example CRE with very high FoV

CRE: chr11_77965366_77966105

Fraction of explained variance: 0.959 SwissRegulon link: chr11_77965366_77966105 Associated genes:

Sez6 : seizure related gene 6 Links
 Associated transcript: ENSMUST00000140630

On this plot you can see a contribution of individual motifs into the predicted signal intensities. Use checkboxes in the table on the right side to show or remove impact of a motif to the predicted signal intensities. By default all motifs are turned off.

This plot shows signal intensities and predicted signal of mm10_chr11_77965366_77966105 CRE. Left vertical axis is a CRE signal intensities on the log2 scale. Right vertical axis is a predicted CRE signal on the log2 scale. Horisontal axis indicates samples.

Search:	Show 10 \$	entries	
Motif N	ChiSq ↑↓	SiteCount 🛝	Z-val ↑↓
Vsx1_Uncx_Prrx2_Shox2_Noto	10.86	0.72	6.42
Rfx3_Rfx1_Rfx4	9.34	1.24	31.11
Nkx6-1_Evx1_Hesx1	7.08	1.54	5.66
Hoxb2_Dlx2	6.06	1.14	5.48
Gsx1_Alx1_Mixl1_Lbx2	4.78	1.54	6.13
✓ Klf4_Sp3	3.24	1.12	13.37
✓ Hnf1b	2.18	0.28	23.65
Pparg_Rxrg	1.95	1.18	9.16
✓ Zfx_Zfp711	1.40	2.79	9.60
Wrnip1_Mta3_Rcor1	1.35	6.14	8.54
Showing 1 to 10 of 136 entries Previous	1 2 3	4 5	14 Next

Of course, it is extremely rare for the model to fit accessibility across tissues so well.

All results are downloadable in flat file formats

Project

Novigation

ENCODE: ATAC-seq of different tissues during embryonic development

CREMA

CREMA identifies cis-regulatory elements genome-wide and models their activities across samples in terms of predicted transcription factor binding sites within them.

Regulatory motifs sorted by significance (z-value)

Navigation	Search:	Show 10 + entries				
Motif significance table Sample table	Motif name	ŤΨ	Z-value 1↓	Associated genes	Profile	Logo
PCA plots All CRE sorted by FOV	Tal1		43.90	Tal1	have	
Perform sample averaging	Rfx3_Rfx1_Rfx4		31.11	Rfx3Links ▼Rfx1Links ▼Rfx4Links ▼	Arur	The second secon
Downloads CRE list CRE signal intensity table Motif activity table	Hnf4a		24.18	Hnf4a Links -	mlet	
Motif activity errorbars Motif-CRE scores Motifs significances Download the whole report	Hnf1b		23.65	Hnf1b Links -	Ma	

These results allow all kinds of downstream analyses of your own design.

Example

Variability in accessibility is larger for distal regions and larger at later developmental time points

CREMA: acknowledgments

CREMA: Cis-Regulatory Element Motif Activities

Please choose appropriate options and start your job submission by clicking the "Start upload" button.

	Email	:							
	Proje	ct name:							
	Data	type:		O DN (ATA	IA access C/DNase-	ebility ·Seq)	● Enha (Cł	ancer marks nIP-Seq)	
	Orgai	nism:		human	(hg19)	mouse	(mm10)	● rat (rn6)	
Add fi	iles	Start upload	Car	ncel upload	Delete				
About	Usa	ge How to up	load	data Ex	ample res	ults Teri	ms of use	Contact	

Anne Krämer CREMA developer

Mikhail Pachkov web-interface developer

Severin Berger CRUNCH developer

Phil Arnold MotEvo

Saeed Omidi CRUNCH pipeline

Nick Kelley pre-processing

Silvia Salatino pre-processing