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Agenda

• 9:00 – 10:30 ISMARA: Introduction to Motif Activity Response Analysis (MARA) modeling 
gene expression in terms of regulatory sites. Theory and overview of the results.

• 10:30 – 11:00 Coffee break

• 11:00 – 12:30 CREMA: Cis-regulatory Element Motif Activities. Modeling chromatin state 
genome-wide in terms of regulatory sites. Theory and overview of the results.

• 12:30 – 13:30 Lunch break

• 13:30 – 15:00 Using the web interface: Supported species, data types and formats, 
uploading data, downloading result, and advanced interactive features.

• 15:00 – 15:30 Coffee break

• 15:30 – 17:00 Hands-on exercises. Users explore results using their own datasets.
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ISMARA
Automatically inferring key gene regulatory circuitry from gene expression data 

ismara.unibas.ch

ismara.unibas.ch



How is the regulatory code in the DNA 
`read out’ to control cell fate and identity?

white and red blood cellsegg cell with 2 coronal cells three neurons
osteoclastsHow do gene regulatory networks function as systems.

• What is a cell type? 
• How is cell identity stabilized? 
• Where is the key information? What does not matter? 



me

Socrates



How is the regulatory code in the DNA 
`read out’ to control cell fate and identity?

white and red blood cellsegg cell with 2 coronal cells three neurons
osteoclastsHow do gene regulatory networks function as systems.

• What is a cell type? 
• How is cell identity stabilized? 
• Where is the key information? What does not matter? 
My worries
• We think we know/measure a lot, but there is orders of magnitude more we do not know.
• Nowhere near the ability to meaningfully model what is going on.
• High-throughput measurements full of artifacts and biases that we poorly understand.
• Data analysis typically involves dizzying arrays of normalizations, filters, and 

transformations.
What useful things can computational analysis offer?
Robust and transparent methods that help guide experimental efforts.



What does my transcriptome/epigenome data
say about regulation in my system?

Typical questions:
What are the key regulators? What are their roles? Which pathways do they target?

Challenges
• Cannot do saturating genetic screens (too many candidate TF/miRNA regulators).
• Easy to do high-throughput measurements (microarray, RNA-seq, ChIP-seq, ATAC-seq).
• Experimental labs often do not have the expertise to infer regulation from  such data.
• Collaborations with dedicated computational labs on a per case basis are big investment of 

time and effort.
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Typical analysis of transcriptomic data

Basic processing
• Map raw reads to transcripts.
• Find all genes that are expressed.
• Find genes that are differently expressed across conditions, e.g. using DESeq.

Clustering genes with similar expression Enriched categories among gene sets

Limitations of these traditional approaches
• Does not infer anything about gene regulation.
• Often unclear how to experimentally follow-up.



Completely automated prediction of regulatory 
interactions from high-throughput data  

ismara.unibas.ch

Upload raw micro-array oe RNA-seq data and predict:
• Key regulators (TFs/miRNAs) in the system.
• Regulator activities across the input samples.
• Sets of target genes and pathways for each regulator.
• The regulatory sites on the genome through which each regulator acts.
• Interactions between the regulators.

Suzuki et al.
Nat Genet 2009

Balwierz et al. 
Genome Res 2014



Modelling gene expression and chromatin state in terms of 
TFBS using a linear model



Modelling gene expression and chromatin state in terms of 
TFBS using a linear model



Constructing reference promoteromes and transcriptomes
Input data
• Collections of experimentally measured 

transcription start sites (e.g. CAGE). 
• Collections of know full-length mRNAs (e.g. 

Genbank, Gencode, or Ensembl).

Procedure: Cluster nearby TSSs with mRNA starts

• mRNA starts are clustered with TSSs within 150bps (one nucleosome) of each other.
• Each cluster corresponds to a promoter.
• Only clusters with associated transcripts are retained.

HSPBP1 genetranscripts promoter 1 prom. 2
prom. 4prom. 3



Regulatory motifs represent 
sequence binding preferences of transcription factors

IRF7 E2F REST GATA2/4

Position specific weight matrix representation (sequence logos): 

Example: E. coli’s fruR binding sites and weight matrix
AAGCTGAATCGATTTTATGATTTGGT
AGGCTGAATCGTTTCAATTCAGCAAG
CTGCTGAATTGATTCAGGTCAGGCCA
GTGCTGAAACCATTCAAGAGTCAATT
GTGGTGAATCGATACTTTACCGGTTG
CGACTGAAACGCTTCAGCTAGGATAA
TGACTGAAACGTTTTTGCCCTATGAG
TTCTTGAAACGTTTCAGCGCGATCTT
ACGGTGAATCGTTCAAGCAAATATAT
GCACTGAATCGGTTAACTGTCCAGTC
ATCGTTAAGCGATTCAGCACCTTACC
**gcTGAAtCG*TTcAg**c******

wα
i  =  Probability of finding base α  at position i.   

Example, position 4: 
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Predicting transcription factor binding sites
using comparative genomics: MotEvo

TF binding site prediction procedure
• For each promoter, collect promoter sequence plus 500bp upstream and 500bp downstream.
• Align each promoter region with orthologous regions from other species.
• For each motif in the motif collection, predict binding sites using the MotEvo algorithm. 

Phylogeny:

Alignment of
orthologous
promoter 
sequences

Predicted sites

Arnold et al, Bioinformatics. 2012 Feb 15;28(4):487-94.



Example: Predicted TFBSs in the proximal promoter of the SNAI3 TF.

Summarizing the TFBS predictions
Sum the posteriors of the predicted sites for each motif to obtain a matrix of site-counts:

Genome-wide annotation of 
regulatory sites in promoters

 Total number of sites for motif  in promoter .pmN m p=

http://www.swissregulon.unibas.ch



Including regulation by miRNAs

.promoter  with associated iptsin transcr  motif seedfor  sites ofnumber  Average pN p µµ =

miRNAs destabilize mRNAs by hybridizing to sites in their 3’ UTRs.
Gaidatzis et al. BMC Bioinformatics 2007
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miRNAs bind mainly through their 5’ seed region

Sites with a perfect seed match show strong conservation

We include predicted sites for 86 seed families (based on seed conservation analysis from 
TargetScan version 7).  Site counts:



Florian Geier

1. Large motif collection from: SwissRegulon, CRUNCH, 
JASPAR, Hocomoco, Homer, Uniprobe, Encode, HT-SELEX.

2. Multiple candidate motifs for each transcription factor (TF).

3. Selecting an optimal set of motifs: Run ISMARA on the 
FANTOM5 expression atlas (889 human/388 mouse 
samples) selecting one motif per TF (simulated annealing). 

4. Redundancy removal: Collapse similar motifs with 
statistically indistinguishable  activities in the FANTOM5 
atlas (Bayesian model selection). 

Daniel Schmocker

human mouse
Initial motifs 2181 2035

Associated TFs 682 679
miRNAs 106 99

Motif groups 499 503

Reverse cumulative:
explained variance per sample

mouse 
F5 motifs

human
F5 motifs

human
F4 motifs mouse

F4 motifs

0.5
0.25

0.1

0.02
0.01

fraction of explained variance
0.1 0.15 0.200.05

Curating a set of mammalian motifs and sites



Modeling gene expression and chromatin state in terms of 
TFBS using a linear model



Quantifying genome-wide expression

Promoter 1

Promoter 2

Promoter 3

Microarray probes

Input:
RNA-seq read densities

conditions s conditions s conditions s

Eps

Output:
expression profiles

Promoter 1 Promoter 2 Promoter 3



Mapping reads to transcripts
• Each RNA-seq read is mapped to the transcriptome 

using Kallisto.
• The weight of each read is distributed uniformly 

over all transcripts consistent with it.

HSPBP1 gene

wt=1/8+1+1/6

wt=1/8+1/6+1/3
wt=1/8+1/2

• Each transcript’s total weight wt  is the sum of the weights of all reads mapping to the 
transcript. Then weight is divided by transcript length Wt = wt/Lt.

• A promoter’s total weight Wp is the sum of the weights of its transcripts:
• A pseudo-count is added (constant corresponding to 0.5 tpm):
• The weights are rescaled to represent transcripts-per-million (tpm), and log-transformed: 

Wp = Wtt∈p∑
Wp →Wp + λ

Ep = log2 10
6 Wp

W !p!p∑
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Modeling gene expression and chromatin state in terms of 
TFBS using a linear model



MARA’s linear model
• Measurements are represented as a matrix         of expression across all promoters and 

samples. 
• Each sample (column of the matrix) is normalized by subtracting the mean expression, 

and site counts are normalized to sum to zero across promoters.

• We model the expression in terms of the site counts and motif activities

• We separate the fitting into a fit of the average expression:

• And fitting of expression changes across the conditions:

Eps

Es =
1
P

Eps
p
∑ Eps → E ' ps = Eps − Es

E ' ps = noise + !NpmAms
m
∑

E ' p = 1
S

E ' ps
s
∑ Am = 1

S
Ams

s
∑ E ' p = noise + !Npm Am

m
∑model:

!Eps = E ' ps− E ' p !Ams = Ams − Am !Eps = noise + Npm
!Ams

m
∑

Note: !Eps
s
∑ = !Ams

s
∑ = 0

Npm → !Npm = Npm − NmNm =
1
P

Npm
p
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Fitting MARA’s linear model (technical)
!Eps = noise + !Npm

!Ams
m
∑ Assume the noise is Gaussian gives likelihood:

P( !E | !A)∝ exp −
!Eps − !Npm

!Amsm∑( )p,s∑
2

2σ 2
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To avoid overfitting, we include a 
Gaussian prior (with average zero) over 
motif activities (ridge regression):

P( !A |λ)∝ exp − λ 2

2σ 2
!Ams
2

m,s
∑
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The parameter λ of the prior is optimized by maximizing the likelihood of the data, 
marginalizing over all motif activities.

The optimal posterior activities         and the posterior 
distribution over the activities can be easily determined 
through Singular Value Decomposition: 
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*
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Fitting MARA’s linear model (conceptual)

Expression from promoter 
p in sample s

Number of functional 
sites in promoter p for 

regulator motif m

Activity of motif m in 
sample s

Linear model: Eps = noise + NpmAmsm∑

Bayesian inference of the motif activities
Obtain both best-fit activities and error-bars on the activities:
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Significance of motif m:

Notes
• Motif activities capture the expression changes across the input samples.

• Activity meaning:         is the amount by which log-expression of a transcript is predicted to 
go up in sample s when a site for motif m is added to its promoter.

• Significance meaning: zm is the typical number of standard-deviations that the activity of 
motif m is away from its average of zero.

Ams
* = Fitted activity of motif m in sample s.

δ Ams = Error-bar on the  activity.

Ams
*



Example dataset: Mouse liver development

RNA-seq at 12 time points (in triplicate). Starting 2 days before birth, until 60 days after birth.  

prebirth

suckling

weaning

Clustering of expression profiles Time-dependent expression of genes 
in different metabolic categories



Example dataset: Mouse liver development
1. Go to: ismara.unibas.ch. 
2. Click on the 'Example results' tab. 
3. The mouse liver datasets are at the top. 



Most significant motifs (all samples)

• Top motifs sorted by 
significance.

• Z-values.

• Names of the associated 
TF genes.

• Thumbnails of the motif 
activity across the time 
course.

• Sequence logos of the 
binding patterns of these 
motifs.



Example dataset: Mouse liver development
1. Go to: ismara.unibas.ch. 
2. Click on the 'Example results' tab. 
3. The mouse liver datasets are at the top. 



Most significant motifs (replicate averaged)

• Reorders motif 
significance.

• Top Z-values 
increase.



Most significant motifs (replicate averaged)

The most significant motif in the 
liver maturation data is HNF4a. 
HNF4a is a key TF in hepatocyte 
development, e.g.



Information regarding the HNF4a motif
Links with information about 
the TF.

TF’s promoter on the 
chromosome.

Activity of the motif at each 
time-point, and error bars on 
those activities.

prebirth suckling weaning
Notes
• Motif activity increases with time.
• This means the targets of HNF4a (on average) increase expression with time.
• From -0.4 to 0.3 means the average effect of a single HNF4a site goes from 40% reduction 

of expression to 30% increase in expression relative to average expression.



Information regarding the HNF4a motif

prebirth suckling weaning

HNF4a activity
vs. mRNA 
expression of the 
HNF4a TF itself.

Notes
• Positive correlation indicates 

HNF4a acts as an activator.

• Transcripts per million go 
from  25 = 32 to 27=128.



Example with two TFs for one motif: E2F2_E2F5
Interpretation: both TFs bind 
to the same binding sites.

E2f2 is both higher expressed 
and correlates much better 
with the motif activity.

prebirth suckling weaning

E2f2

E2f5



Example of a negatively correlated motif: Cebpe

Interpretation: Cebpe is acting as a repressor in this system.

mRNA expression of the TF 
Cebpe is negatively 
correlated with its motif 
activity, as inferred from the 
expression of it targets.



Predicting targets of each motif (conceptual)

• For each motif, select promoters with predicted sites, i.e with

• Mutate promoter p to remove the binding site(s) for motif m:
• Updated site-count matrix:
• Log-likelihood ratio of fitting all data with      versus the mutated    :

0>pmN

6 8

Observed expression ep

Predicted expression ep

Predicted expression ep
without motif m.

N→ N
Npm → 0

N N

Spm = log
dAP(E | N,A)∫
dAP(E | N,A)∫

"

#
$
$

%

&
'
'

Quantifies the contribution of motif m to explaining the 
expression pattern of promoter p.

The log-likelihood ratio Spm 
quantifies how much the quality of 
the fit is reduced when the sites for 
motif m in promoter p are removed.



Chi-squared gives square deviation observed and predicted expression:

When sites for m in promoter p are removed, chi-squared becomes:

To a good approximation, the target score log-likelihood ratio is given by

where                               is the average chi-squared across all promoters and samples. 

The target score is the log-likelihood ratio of the fit of the model 
when the binding sites for motif m are removed from promoter 
p, i.e. when              .

Predicting targets of each motif (technical)

N→ N
Spm = log

dAP(E | N,A)∫
dAP(E | N,A)∫

"

#
$
$

%

&
'
'

Interpretation:
• The target-score measures how much the squared-deviation between fit and model 

increases when the sites for motif m in promoter p are removed, relative to the average 
squared-deviation across all promoters and samples.

Notes: 
• Generally, the more samples, the higher the target scores are.
• Target scores can be negative as well (when the predictions are better without the site).



List of target promoter/genes of HNF4a
Top of the list of HNF4a target promoters, sorted by their significance:



List of target promoter/genes of HNF4a
Top of the list of HNF4a target promoters, sorted by their significance:



SwissRegulon view of the Cyp2c29 promoter

Location of the Hnf4A binding site.

This predicts which bases in the promoter are crucial for the regulation by HNF4a.



What pathways does HNF4a target?
Enriched Gene Ontology categories

• For each Gene Ontology category (starting from the most specific), calculate the sum and 
average of target log-likelihood scores for the genes in the category.

• Sort all categories by average target score or summed log-likelihood of all genes.
• For each category, remove all genes in this category from other categories lower in the list.
• The table can be searched, expanded, and sorted in different ways.



What pathways does HNF4a target?
STRING-db picture of the network of HNF4a targets

Cytochrome P450

heme transport
coagulation

urea cycle

Complement cascade



Direct interactions between HNF4a and other regulators



Direct interactions between HNF4a and other regulators



Direct interactions between HNF4a and other regulators

Hnf1a and Hnf4a are in fact known to 
transcriptionally regulate each other.



Most significant motifs

What is the role of the E2F 
motifs?



E2f2 and E2f1 targets are down-regulated over time

Note that the motif activities and expression of both factors are very similar.
Both are down-regulated across the time course.
This suggests we are looking at a single `pathway’. 



Network of E2f2 target genes

The extremely high density of 
links shows E2f2 is targeting a 
very well-studied pathway.

Inspection shows that these are 
all cell cycle genes, and in 
particular genes involved in 
initiation of replication.



Pathways most targeted by E2f1 and E2f2
G1 – S transition of the cell cycle

This picture is confirmed when one looks at the top Gene Ontology categories and pathways 
among the E2f2/E2f1 targets:

E2f1/E2f2 are regulating initiation of DNA replication, i.e. transition from G1 to S.
The fact that their activity decreases with time likely indicates that the amount of cell 
division is steadily decreasing during liver maturation.

Gene overrepresentation in biological_process category:

Gene overrepresentation in cellular_component category:

Gene overrepresentation in curated gene sets: REACTOME pathways category:



How is a given gene of interest regulated?



Sortable table of genes with expression statistics
Average log-tpm expression Standard-deviation of log-tpm expression Fraction of expression variance 

explained by MARA.



Observed and predicted expression of H2afx

All motifs turned off.



Observed and predicted expression of H2afx

All motifs turned on.



Observed and predicted expression of H2afx

Target score
for the motif.

Total sites
for the motif.

Z-score of the motif
activity.



Downloadable results for downstream analysis

These downloadable result files will be discussed in the afternoon session. 
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